Revealing small-scale structures in turbulent Rayleigh-Bénard convection

Yue-Kin Tsang
School of Mathematics and Statistics
University of St Andrews

Emily S. C. Ching, Adam T. N. Fok
Department of Physics, The Chinese University of Hong Kong

XiaoZhou He, Penger Tong
Department of Physics, Hong Kong University of Science and Technology
Thermal convection

- Free convection
 - imposed temperature gradient leads to density difference in a fluid
 - hot fluid tends to rise, cold fluid tends to fall
 - flow is driven by buoyancy

- Applications
 - kitchen:
 - boiling water in a kettle
 - air flow in an oven
 - atmosphere and ocean:
 - formation of cloud and thunderstorms
 - oceanic deep convection \rightarrow moderate winter climate in northern Europe
 - Earth’s interior: mantle convection
Rayleigh-Bénard convection

Fluid in a box heated from below and cooled from above

- Rayleigh number
 \[\text{Ra} = \frac{\alpha g H^3 \Delta T}{\nu \kappa} \]

- Prandtl number
 \[\text{Pr} = \frac{\nu}{\kappa} \]

- Aspect ratio
 \[\Gamma = \frac{D}{H} \]

\(\nu \): viscosity
\(\kappa \): thermal diffusivity
\(\alpha \): volume expansion coefficient
Left: $Ra = 6.8 \times 10^8, \ Pr = 596$ (dipropylene glycol), $\Gamma = 1$

Right: $Ra = 2.6 \times 10^9, \ Pr = 5.4$ (water), $\Gamma = 1$

Global and local properties

- **Large-scale (global) quantities**, e.g. total heat transfer across the system

- **Small-scale (local) quantities**
 - structure of velocity and temperature fields
 - effects of thermal plumes
 - Tool: structure functions, e.g.

\[
S_{u}^{(p)}(r) = \langle |u(\vec{x} + \vec{r}) - u(\vec{x})|^p \rangle_{\vec{x}}
\]

\[
S_{T}^{(p)}(r) = \langle |T(\vec{x} + \vec{r}) - T(\vec{x})|^p \rangle_{\vec{x}}
\]

- expect different behaviour in the bulk and near the boundaries
Temperature structure functions

\[S_T^{(p)}(r) = \langle |T(\vec{x} + \vec{r}) - T(\vec{x})|^p \rangle_{\vec{x}} \]

- probing activities at scale \(r \)
- larger \(p \) emphasizes more extreme events
- motivations from Kolmogorov-type phenomenology
- scaling behavior:
 \[S_T^{(p)}(r) \sim r^{\zeta_T} \]

Given a time-series of measurement \(T(t) \) at a fixed location, one can define a time domain structure function:

\[S_T^{(p)}(\tau) = \langle |T(t + \tau) - T(t)|^p \rangle_t \]

- Taylor’s frozen flow hypothesis \(\Rightarrow S_T^{(p)}(\tau) \sim \tau^{\zeta_T} \)
Cascade picture: passive scalar

\[\begin{align*} 2r & \rightarrow r \rightarrow \frac{r}{2} \rightarrow \cdots \rightarrow \frac{r}{2^N} \rightarrow \varepsilon \\
\Pi(2r) & \rightarrow \Pi(r) \rightarrow \Pi\left(\frac{r}{2}\right) \rightarrow \cdots \rightarrow \frac{r}{2^N} \rightarrow \varepsilon \end{align*} \]

Energy and temperature variance transferred from large scales to small scales, eventually being dissipated at the smallest scales

\[\varepsilon = \text{mean energy dissipation rate} \]

\[\chi = \text{mean thermal dissipation rate} \]

- **no buoyancy**, energy transfer rate \(\Pi \) is scale independent

\[\Pi = \varepsilon \quad \text{in the inertial range} \]

- relevant parameters are: \(\varepsilon, \chi, r \)

- Obukhov-Corrsin scaling:

\[S_T^{(p)}(r) \sim \varepsilon^{-p/6} \chi^{p/2} r^{p/3} \]
Cascade picture: active scalar

\[2r \rightarrow r \rightarrow r/2 \rightarrow r/2^N \]

\[\alpha g u_r T_r \]

\[
\partial_t \vec{u} + (\vec{u} \cdot \nabla) \vec{u} = -\nabla p + \nu \nabla^2 \vec{u} + \alpha g T \hat{z}
\]

\[
\partial_t T + (\vec{u} \cdot \nabla) T = \kappa \nabla^2 T
\]

- **buoyancy is important**, \(\Pi(2r) \) is negligible at \(r \)

\[
\Pi(r) = \alpha g u_r T_r \quad \text{in the inertial range}
\]

- relevant parameters are: \(\alpha g, \chi, r \)

- Bolgiano-Obukhov scaling:

\[
S_T^{(p)}(r) \sim (\alpha g)^{-p/5} \chi^{2p/5} r^{p/5}
\]
Intermittency correction

- ϵ and χ varies significantly in space

- **Refined similarity hypothesis**: replace ϵ and χ by their local average over a ball of radius r about \vec{x}, $\mathcal{B}(\vec{x}, r)$

 \[
 \epsilon_r(\vec{x}) = \langle \epsilon(\vec{x}') \rangle_{\vec{x}' \in \mathcal{B}}
 \]

 \[
 \chi_r(\vec{x}) = \langle \chi(\vec{x}') \rangle_{\vec{x}' \in \mathcal{B}}
 \]

- The scaling predictions become

 OC (passive): $S_T^{(p)}(r) \sim \langle \epsilon_r^{-p/6} \rangle_{\vec{x}} \langle \chi_r^{p/2} \rangle_{\vec{x}} r^{p/3}$

 BO (active): $S_T^{(p)}(r) \sim (\alpha g)^{-p/5} \langle \chi_r^{2p/5} \rangle_{\vec{x}} r^{p/5}$

- $\langle \epsilon_r^{-p/6} \rangle_{\vec{x}}$ and $\langle \chi_r^{p/2} \rangle_{\vec{x}}$ are r-dependent, hence modifying the scaling exponents of $S_T^{(p)}(r)$
Some previous experimental work

Early time-domain measurements
- Wu et al. (PRL 1990) reported BO scaling at the convection cell center (using helium gas)
- Niemela et al. (Nature 2000) found BO scaling at large τ and OC scaling at small τ (using similar Ra, Pr and $\Gamma = 0.5$ as in Wu et al. 1990)
- Skrbet et al. (PRE 2002) found no scaling range at all (using the same setup as Niemela et al. 2000 but with $\Gamma = 1$)
- Zhou & Xia et al. (PRL 2001) observed BO scaling at the cell center and an apparent OC scaling in the mixing zone (using water)

Recent space-domain measurements
- Sun et al. (PRL 2006) demonstrated that behaviour at the cell center does not obey BO scaling and is closer to OC scaling
- Kunnen et al. (PRE 2008) reported a possible BO scaling at larger scales

Difficulties in comparing experimental results to theory:
- limited scaling range
- validity of the frozen flow hypothesis
- anisotropy and inhomogeneity, ...
Conditional structure functions

Recall in the space-domain, \(\chi_r(\vec{x}) = \langle \chi(\vec{x}') \rangle_{\vec{x}' \in \mathcal{B}(\vec{x},r)} \)

- OC (passive): \(S_T^{(p)}(r) \sim \langle \chi_r^{p/2} \rangle_{\vec{x}} r^{p/3} \)
- BO (active): \(S_T^{(p)}(r) \sim \langle \chi_r^{2p/5} \rangle_{\vec{x}} r^{p/5} \)

In the time-domain, given the time-series \(T(t) \) and \(\chi(t) \)

Define: \(\chi_\tau(t) = \langle \chi(t') \rangle_{t' \in \mathcal{B}(t,\tau)} \)

- OC (passive): \(S_T^{(p)}(\tau) \sim \langle \chi_\tau^{p/2} \rangle_t \tau^{p/3} \)
- BO (active): \(S_T^{(p)}(\tau) \sim \langle \chi_\tau^{2p/5} \rangle_t \tau^{p/5} \)

Define the conditional structure functions:

\[\hat{S}_T^{(p)}(\tau, X) = \langle |T(t + \tau) - T(t)|^p \mid \chi_\tau(t) = X \rangle_t \]

- OC (passive): \(\hat{S}_T^{(p)}(\tau, X) \sim X^{p/2} \tau^{p/3} \)
- BO (active): \(\hat{S}_T^{(p)}(\tau, X) \sim X^{2p/5} \tau^{p/5} \)
Measuring local thermal dissipation rate

\[\chi_{\tau}(\vec{x}, t) = \frac{1}{\tau} \int_t^{t+\tau} \kappa |\nabla T_f(\vec{x}, t')|^2 \, dt' \]

where \(T_f = \) temperature fluctuation

Home-made temperature gradient probe
- four temperature sensors of diameter 0.11mm
- separation between sensors = 0.25mm
- temperature resolution \(\sim 5\text{mK} \)

He & Tong, Phys. Rev. E 79, 026306 (2009)
Results: conditional structure functions

\[\hat{S}_T^{(p)}(\tau, X) = \langle |T(t + \tau) - T(t)|^p \mid \chi_\tau(t) = X \rangle_t \sim X^{\beta(p)} \]

We have found significant scaling ranges in both cases.

\[Ra = 8.3 \times 10^9, \ Pr = 5.5, \ \Gamma = 1 \]
Results: the scaling exponents

\[\hat{S}_T^{(p)}(\tau, X) = \langle |T(t + \tau) - T(t)|^p \rangle \left| \chi_\tau(t) = X \right \rangle_t \sim X^{\beta(p)} \]

\[p = 0.5 \text{ to } 4 \text{ from bottom to top, } \tau_0 \text{ is the data sampling interval} \]

- \(\beta(p) \) depends on \(\tau \)
- for each \(p \), \(\beta(p) \) attains a maximum \(\beta_{\text{max}}(p) \)
Results: passive vs. active

Experimental data: cell center (circles)
bottom plate (triangle)

Theory: \(p/2 \) passive OC scaling (solid)
\(\frac{2p}{5} \) active BO scaling (dashed)
introduce the conditional structure functions

\[\hat{S}_T^{(p)}(\tau, X) = \langle |T(t + \tau) - T(t)|^p \bigg| \chi_\tau(t) = X \rangle_t \]

\(\chi_\tau = \) local time-averaged thermal dissipation rate

investigate the scaling with \(X \) (rather than \(\tau \)) and found significant scaling ranges,

\[\hat{S}_T^{(p)}(\tau, X) \sim X^{\beta(p)} \]

results using experimental data at \(Ra = 8.3 \times 10^9 \) suggest that temperature obeys the

- the Obukhov-Corrsin scaling for a passive scalar at the convection cell center
- the Bolgiano-Obukhov scaling for an active scalar near the bottom plate