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We provide numerical evidence for the existence of a cascade of filament instabilities in the surface
quasigeostrophic system for rotating, stratified flow near a horizontal boundary. The cascade involves
geometrically shrinking spatial and temporal scales and implies the singular collapse of the filament width
to zero in a finite time. The numerical method is both spatially and temporally adaptive, permitting the
accurate simulation of the evolution over an unprecedented range of spatial scales spanning over ten orders
of magnitude. It provides the first convincing demonstration of the cascade, in which the large separation
of scales between subsequent instabilities has made previous numerical simulation difficult.
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The surface quasigeostrophic system is a two-dimensional
active scalar equation developed as a model for the slow,
large-scale motions of rotating, stratified flows of planetary
atmospheres and oceans near a horizontal surface or strong
jump in stratification such as the midlatitude tropopause
[1–3]. It may be expressed by the material advection of
a surface temperature field θðx; y; tÞ by a flow to which it is
diagnostically related:

∂θ
∂t þ Jðψ ; θÞ ¼ 0; θ ¼ −ð−ΔÞ1=2ψ ; (1)

where ψ is the stream function, Δ is the two-dimensional
Laplacian, and Jð·; ·Þ is the Jacobean determinant [4].
It differs from the usual two-dimensional Euler equations
of incompressible fluid motion through the relation
between θ and ψ , where the more local relation in the
surface quasigeostrophic case gives rise to more energetic
small-scale motions. In fact, the advection term in Eq. (1)
possesses a quadratic degree of nonlinearity similar to that
of the three-dimensional Euler equations, for vorticity in
the case of the Euler equations and for the skew gradient of
temperature in the case of the surface quasigeostrophic
equations [5–7]; see, in particular, Eq. (13) of Ref. [6]. The
similarities between Eq. (1) and the three-dimensional
Euler equations have stimulated much research into the
regularity of the surface quasigeostrophic system, in
particular, whether a singularity in the temperature gradient
∇θ may form in finite time from smooth initial conditions,
or whether weak solutions may possess a finite dissipation
anomaly in the inviscid limit, the counterpart to the famous
Onsager conjecture for turbulent flow governed by the
three-dimensional Euler equations [8,9]. Despite the reduced
dimensionality, however, the presence of singularities in the
surface quasigeostrophic system remains an open problem.
When the initial distribution of θ is smooth, it is known

that a singularity may not form in finite time if the geometry
of the temperature field takes the form of a closing saddle,

involving the growth of unbounded gradients of θ along a
line [10]. Numerical studies of the closing saddle [9,11]
indicate double exponential growth ∇θ ∝ exp exp t, or an
even less rapid evolution with time. Singularities may yet
form at isolated points. One scenario for this has been
proposed involving a cascade of repeated filament insta-
bilities of geometrically shrinking scale [4,12,13]. Because
filament growth rates scale with the inverse filament width,
were such a cascade of instabilities to follow a self-similar
pattern, then a singularity involving the blowup of ∇θ
would occur in finite time. However, a large-scale separation
between subsequent instabilities (see below) means that
such a cascade has been extremely difficult to demonstrate
numerically, the most recent results being limited to at
best two or three consecutive instabilities before the limits of
numerical resolution are reached [14]. Furthermore, uncer-
tainties remain over the role of the numerical grid in the
triggering of each instability.
In the special case where the temperature distribution

comprises a discrete patch (uniform inside a closed contour,
zero outside, for example), the relation between θ and ψ
may be expressed in terms of a single contour integral
around the patch boundary, in a manner directly analogous
to the Biot-Savart law relating electric current to magnetic
field. Representing the patch boundary by a closed contour
C, its evolution is then governed by

dxi

dt
¼ θ0

2π

Z
C

dx0

jxi − x0j (2)

for each point xi on the contour C. Although the disconti-
nuity in θ at the patch boundary implies a logarithmic
divergence of the velocity component tangential to C [15],
this component has no effect on the boundary evolution,
which is determined entirely by the component normal to C,
and the problem is well posed. The regularity problem for
this system is concerned with the formation in finite time
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of a discontinuity in the patch boundary, either through the
development of a corner with infinite curvature at a point,
or the approach to zero of the minimum distance between
two contour segments. In contrast to the smooth case
examined in Ref. [14], the filament cross section formed by
instabilities of the patch is guaranteed to retain the same
trivial profile throughout the evolution. Further, the reduc-
tion of the dynamics in the patch case to the evolution of a
single contour enables the application of a highly efficient
Lagrangian contour dynamical algorithm that is here able to
capture the patch evolution through a series of instabilities
spanning a range of spatial scales on the order of 1010.
The cascade is shown to be self-similar upon a uniform
rescaling of the independent variables.
For completeness, we note that another potential route to

singularity for the patch was identified in numerical
experiments of Ref. [16], involving the formation of a
corner. While mathematically singular, it is important to
recognize that this type of singularity has no counterpart
in the evolution of the continuous θ distribution of most
relevance to fluid motion: a continuous distribution may
develop a corner in a level set of θ without any accom-
panying blowup of the temperature gradient. One reason
that the instability cascade is important is that the counter-
part in the evolution of the continuous distribution may also
exist (see below). The extension of the present result
to the more general case of the continuous distribution
will be addressed in future work.
We solve the evolution of the patch using the contour

dynamics method of Dritschel [17], representing the patch
boundary by a series of points along a contour that are
redistributed according to the boundary shape. The method
has been refined here in that the integral [Eq. (2)] around C
is now computed along a series of global splines connecting
the points, ensuring continuity of curvature and the tangent
vector at each point. The point distribution along C is
determined adaptively according to the curvature of C, the
local value of the strain field, and the minimum separation
between adjacent segments of the boundary, more points
being added to maintain accuracy as the complexity of
the boundary increases. This ensures that accuracy is
maintained even in regions of very high curvature and
where filaments become narrow.
To illustrate the cascade, we consider a patch of θ defined

by an initial elliptical boundary of aspect ratio a ¼ 0.16, as
shown in the upper left panel of Fig. 1, with θ ¼ 2π inside
the boundary and θ ¼ 0 outside. As time increases, the
ellipse rotates and deforms, with the tips developing into
two distinct lobes separated by a filament (t ¼ 1.44) that
subsequently lengthens and thins (t ¼ 1.618 to t ¼ 1.745).
By t ¼ 1.774, an instability of the central filament has
occurred with the development of a series of new lobes
connected by new filaments at a much smaller scale (inset).
These filaments subsequently become unstable and roll up
in a self-similar manner on a shrinking time scale (an

animation of the patch evolution is available in the
Supplemental Material [18]).
The rapid collapse of both time and length scales can be

seen by considering the growth of curvature κ and inverse
minimum cross-filament width d−1 in time. The develop-
ment of the filament instability between t ¼ 1.745 and
t ¼ 1.774 involves the accelerating growth in both κ and
d−1; see Fig. 2(a). At around t ¼ 1.774, this growth slows
as the new filament is more gradually extended. Fast
growth begins again at around t ¼ 1.791 with the onset
of the next filament instability; the shrinking time scales
suggest unbounded growth in both κ and d−1 at a finite time
ts, which is here estimated as ts ¼ 1.791 713 423 533 39;
both κ and d−1 follow approximately 1=ðts − tÞ, although
with alternating periods of more or less rapid growth

FIG. 1. Snapshots of the patch boundary at selected times prior
to the onset of the first filament instability; θ ¼ 2π inside the
patch boundary and θ ¼ 0 outside. The final frame shows an
8× magnification of a portion of the central filament.
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according to whether the smallest filament is in a roll-up or
extending phase.
The evolution as the singularity is approached is clarified

by introducinga rescaled timevariable [16] τ ¼ − logðts − tÞ.
The repeated stages of rapid growth (instability development)
followed by a saturation stage (filament extension prior to
the onset of the next instability) occurmultiple times,with the
filament scale shrinking by a factor of around 20 each time;
seeFig.2(b).Ateachstage, thenewfilamentbecomesunstable
when it shrinks to a width of about 1=20 of that of the parent
filament, independent of the scale of the filament relative to
the original ellipse. The time taken for the development of
each filament is also1=20of that of thepreviousone, implying
a collapse of filament width to zero in a finite time.

Approaching the singularity time ts, the rapid acceleration
of the evolution at the smallest scales means that the large-
scale field becomes effectively frozen. The full evolution up
to this time is presented in the Supplemental Material [18],
which makes a continuous rescaling of the spatial variables
by the instantaneous value of the maximum curvature κ.
Near the final time of the integration t ¼ 1.791 713 423
516 54, or ts − t ¼ 1.7 × 10−11, the shape of the boundary is
as shown in Fig. 3, where the series of panels depicts
successive magnifications by a linear factor of 20 centered
on the point of maximum curvature, each central shaded
square being magnified in the adjacent panel of the same
color. Despite differences in the details of the filament
evolution, the large-scale structure at each level of magni-
fication is remarkably uniform. Note that each magnification
appears rotated through a constant angle, implying a uniform
angular velocity in the rescaled time τ.
The physical cause and uniform scale reduction of the

instability cascade may be understood from consideration of
the stability properties of a single filament in the surface
quasigeostrophic system. Linear growth rates for the
filament instability scale as the inverse filament width: the
inversion relation in Eq. (1) means that velocity values scale
as θ0, which implies that the times taken for disturbances to
grow to amplitudes comparable to the filament width are
proportional to the filament width itself. We note that such a
cascadeis typicallyprecludedin thetwo-dimensionalvorticity
equation because of the stabilizing effect of background
shear on the growth of filament disturbances [19] and because
growth rates do not increase as the filament width decreases.
The independence of the rescaling factor on scale

suggests that each instability is governed principally by
the local shape of the patch in the vicinity of the filament.
Because interactions in the quasigeostrophic model are
more local than for the case of two-dimensional vortex
dynamics, the evolution of a given filament is to a good
approximation controlled by the influence of the parent
filament that spawned it. However, the contribution to the
velocity field by a local approximation to the contour
integral, in fact, diverges logarithmically, meaning that the
precise evolution requires consideration of the global patch
shape. The dynamics is thus expected to be nonuniversal
and may depend upon details of the initial conditions.
Indeed, for initially elliptical patches, a variety of different
evolutions is obtained for different values of the aspect ratio
a. For large enough a, the evolution appears to remain
smooth for all time; for a in the range (0.17,0.19), the patch
boundary develops a corner before disturbances of the
central filament have time to grow to large amplitude; for a
below about 0.12, a more complex combination of corner
formation and filament instability occurs. A full description
will be reported in a subsequent paper.
While a numerical demonstration can never be a sub-

stitute for a rigorous mathematical proof, the present work
provides the strongest evidence to date that the instability
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FIG. 2. Maximum curvature and inverse filament width as a
function of (a) time t and (b) rescaled time τ ¼ − logðts − tÞ, with
ts ¼ 1.791 713 423 533 387 8. Corresponding times in each panel
are indicated by the diamond symbols; the dashed lines indicate
the function 1=ðts − tÞ. Note the double-log scale in (a) and the
single-log scale in (b).
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cascade may exist in the case of the temperature patch. The
existence of such a cascade would, in turn, have implica-
tions for the regularity problem of the quasigeostrophic
equations when the initial θ is a smooth distribution in
space, a problem about which very little is known. Because
θ is conserved on fluid particles, a collapsing filament with
θ smoothly distributed across its width will retain its initial
peak θ value at the filament center. As pointed out in
Ref. [14], the filament boundary, or zero contour of the θ
field, may be identified with the patch contour described
above, in which case an instability cascade would again
be expected to lead to the unbounded growth of ∇θ in
finite time. This is in contrast to the case of the corner
singularity of Ref. [16], which is intrinsic to the case of the
temperature patch and which has no counterpart in the case
of an initially smooth θ distribution. The present results
suggest, therefore, that the evolution of the initially
smooth θ distribution may also develop a singularity in
finite time, an open problem of considerable theoretical
interest.
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