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Abstract

We present and test a new hybrid numerical method for simulating layerwise-two-
dimensional geophysical flows. The method radically extends the original Contour-
Advective Semi-Lagrangian (CASL) algorithm (Dritschel & Ambaum, 1997) by
combining three computational elements for the advection of general tracers (e.g.
potential vorticity, water vapor, etc.): (1) a pseudo-spectral method for large scales,
(2) lagrangian contours for intermediate to small scales, and (3) lagrangian parti-
cles for the representation of general forcing and dissipation. The pseudo-spectral
method is both efficient and highly accurate at large scales, while contour advection
is efficient and accurate at small scales, allowing one to simulate extremely fine-scale
structure well below the basic grid scale used to represent the velocity field. The
particles allow one to efficiently incorporate general forcing and dissipation.
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1 Introduction

Numerical simulations of atmospheric and oceanic fluid dynamics must deal
with a vast range of active spatial and temporal scales of motion. Much of
this range lies beyond the limit of numerical resolution, requiring small scales
(and high frequencies) to be instead parametrised by ‘eddy-diffusivity’ or
‘closure’ schemes meant to approximate the collective effects of unresolved
motions on resolved ones (cf. Nadiga, 2008 & refs.). Here, we describe a
new modelling advance which reduces the need for closure schemes by al-
lowing one to efficiently extend the range of resolved scales, in particular
for advected tracers. The new advance is the culmination of years of model
development based on “Contour Advection” (CASL, Dritschel & Ambaum,
1997), a hybrid Lagrangian-Eulerian method stemming originally from “Con-
tour Surgery” (Dritschel, 1988) and “Contour Dynamics” (Zabusky, Hughes
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& Roberts, 1979). The new method, called the “Combined Lagrangian Ad-
vection Method” (CLAM), utilises three computational elements — contours,
particles, and grid points (or spectral coefficients) — combined in a way to
optimise performance and accuracy.

While CLAM is built for accurate conservation in the absence of forcing and
dissipation, it also allows one to efficiently handle general non-conservative
processes such as thermal heating, Ekman friction, stochastic forcing, etc
(Dritschel & Ambaum, 2006; Mohebalhojeh & Dritschel, 2009; Fontane &
Dritschel, 2009). Moreover, it may offer distinct advantages over commonly-
used numerical methods in Geophysical Fluid Dynamics when multiple tracers
(dynamical, chemical, biological) are considered (see below).

In the next section, we discuss the structure of CLAM. The method is illus-
trated and tested in an example of forced two-dimensional turbulence in §3.
Finally, some conclusions and ideas for further model development are offered
in §4.

2 The method

CLAM was developed originally to better model both unforced and forced
2D turbulence at ultra-high Reynolds numbers (Dritschel et al, 2008, 2009;
Dritschel & Scott, 2009; Fontane & Dritschel, 2009). It is an extension of the
recent HyperCASL algorithm (Fontane & Dritschel, 2009), which introduced
the idea of using point vortices or particles to represent a residual tracer field
qd (e.g. vorticity in 2D turbulence or potential vorticity in rotating stratified
flows). The residual field qd is used as a temporary reservoir for any explicit
forcing and dissipation: approximately every 4 eddy-turnaround times Teddy

(determined from the maximum vorticity integrated over time), qd is trans-
ferred to a set of contours representing the primary tracer field qa through an
efficient contouring procedure (Dritschel & Ambaum, 2006). At any instant of
time t, the full tracer field q is the sum

q = qa + qd (1)

in which qa evolves conservatively by contour advection, i.e.

dXa

dt
= u(Xa, t) (2)

(equivalent to Dqa/Dt = ∂qa/∂t + u·∇qa = 0), where Xa is a point on a
contour and u(x, t) is the velocity field, while qd evolves by advecting discrete
particles Xd,

dXd

dt
= u(Xd, t) (3)
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Fig. 1. Comparison of the evolution of (a) energy Etot(t) (normalised by
Etot(0) = 0.0148588) and (b) enstrophy Ztot(t) (normalised by Ztot(0) = 4.046645)
between HyperCASL (dashed) and CLAM (solid) in the case of freely decaying
two-dimensional turbulence examined in Fontane & Dritschel (2009). The two curves
shown for CLAM correspond to two different ways of representing qd, by particles
(bold) or by a spectral method (thin). See text below for details.

and adjusting the intensities Γd of individual particles to match the imposed
forcing and dissipation (for details, see Fontane & Dritschel, 2009). Weak
numerical dissipation occurs during the regularization of contours by “surgery”
(Dritschel, 1988), and when resetting the particles on a regular array. Both
are done approximately every 0.2Teddy. Notably, this dissipation is comparable
to that needed in a conventional spectral method using a grid 10–20 times
finer than used in HyperCASL and CLAM to represent the velocity field u

(Dritschel & Scott, 2009).

An unwanted feature of HyperCASL is the introduction of a small level of
stochastic noise in qa by the contour-to-grid conversion procedure and, to a
much lesser extent, by contour surgery (Fontane & Dritschel, 2009). Unfortu-
nately, this noise is statistically uniform across Fourier modes and it generates
a growing k1 tracer variance spectrum at small k. In simulations of 2D tur-
bulence (Fontane & Dritschel, 2009), this gives rise to a growing k−1 energy
spectrum at small k (the actual energy spectrum normally decays rapidly as
k → 0, see e.g. Dritschel et al, 2009). As a consequence, this noise primarily
affects the energy while enstrophy (vorticity variance) is more robust, see fig-
ures 1 and 2. And in long-time simulations, it can eventually lead to significant
erroneous energy loss.

CLAM removes this unwanted feature (see figure 1(a)) by using a pseudo-
spectral (PS) method to model large scales, specifically wavenumbers k ≤ kc,
where kc is the ‘filter cutoff wavenumber’. The PS method is well-designed
for this purpose and, moreover, is both accurate and efficient. In CLAM, the
tracer field computed this way, denoted qs, is blended with the primary tracer
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Fig. 2. Difference energy spectra ∆E(k, t) as a function of wavenumber k, at low
k, between HyperCASL and CLAM with particles (thin solid line with diamonds)
and between CLAM with spectral qd and CLAM with particles (bold solid line with
squares), at (a) t = 2 and (b) t = 5. Note: linear scales are used. Note, E(k, t)
is sum of the energy |û|2/2 in spectral components with wavevectors k satisfying
|k| = k = 1, 2, ... (nearest integer). The results were obtained from the turbulence
simulations examined in figure 1.

field qa (represented by contours). The full tracer field is obtained now from

q̂ = F q̂s + (1 − F )q̂a + q̂d (4)

where a hat denotes a spectral transform, and F (k) is a low-pass filter (see
below). The only difference between HyperCASL and CLAM is the replace-
ment of qa in (1) by a weighted sum of qs and qa. The form of the low-pass
filter F (k) was fixed after extensive numerical tests (see below), and it takes
the form

F (k) =
1

1 + (k/kc)4
. (5)

This is known as the second-order Butterworth filter (Butterworth, 1930), and
it has a maximal flatness property for k ≤ kc. Additionally, there is a smooth
transition between q̂s and q̂a around the filter cutoff wavenumber kc.

The introduction of qs requires another dynamical evolution equation. Here,
we evolve qs conservatively, i.e.

Dqs

Dt
= 0 (6)

— with no dissipation whatsoever. This is of course unsustainable in general,
as q̂s will cascade to high k by advection, and the solution will become un-
physical if these high k components of q̂s are not removed, e.g. by numerical
diffusion. Instead, in CLAM, qs and qd are reinitialised at the beginning of
every time-step. The field qs is set to the entire q field obtained at the end
of the previous time-step. Meanwhile, the field qd is chosen to ensure that q
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is unchanged when qs, qa and qd are next recombined. Mathematically, this
means taking

q̂s = q̂ and q̂d = (1 − F )(q̂ − q̂a) (7)

where q̂ is the (spectral) field at the end of the previous time-step. When they
are next recombined, we find

F q̂s + (1 − F )q̂a + q̂d = F q̂ + (1 − F )q̂a + (1 − F )(q̂ − q̂a) = q̂ (8)

as required. A fourth-order Runge-Kutta procedure is convenient for the sub-
sequent integration over a single time-step.

This reinitialisation procedure avoids the erroneous random variations of q̂a

across all k and moreover allows an accurate estimate of the advection term
u·∇qs needed for evolving q̂s. Furthermore, any forcing or dissipation in q̂d in
wavenumbers k<∼ kc is transferred every time-step to q̂s, thereby minimizing
numerical diffusion in q̂d. This is especially important for forced flows, as we
shall see in §3. Regarding efficiency, in forced flows CLAM is only a few per-
cent slower than HyperCASL and significantly more accurate (a comparison
is provided below). The extra cost associated with the spectral method, at
the resolution required for its use in CLAM, is minimal due to the spectral
method’s particularly high efficiency compared to the contour and particle
methods.

The reinitialisation of qd does however require a transfer of the gridded qd to
the particle intensities Γd. This is not an efficient procedure but is required ev-
ery time-step in forced flows. In unforced flows, such as considered in Fontane
& Dritschel (2009) for HyperCASL, this transfer is required only when the
particle array is reset — in practice only after many time-steps. As a result,
HyperCASL is relatively efficient, approximately 60% faster than CLAM in
the simulation of unforced 2D turbulence illustrated in figure 1 (discussed in
Fontane & Dritschel, 2009). We can gain back this loss of efficiency, and more,
if we replace the particle method for qd by a spectral method (as in DCASL,
see Dritschel & Ambaum, 2006, and Mohebalhojeh & Dritschel, 2009) when
simulating unforced flows, or flows forced or damped predominantly at large
scales (e.g. thermal forcing in geophysical flows). But the use of a spectral
method for qd requires some sort of numerical diffusion for stability. The sim-
plest approach is hyperdiffusion, i.e.

Dqd

Dt
= νd(−1)p+1

∇
2pqd , (9)

and after extensive tests varying both the power p and the coefficient νd, we
have adopted the choice p = 2 (bi-harmonic hyperviscosity) together with
νd = 5ζrms(t)/k

4
m, in which km is the maximum wavenumber associated with

the inversion grid and ζrms is the r.m.s. (vertical) vorticity. Besides maintaining
numerical stability and greatly reducing Gibbs fringes near high gradients in
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Numerical Algorithm Cost (CPU seconds)

HyperCASL 2669

CLAM with PS qd 2459

CLAM with PIC qd 4285

Table 1
Comparison of algorithm efficiency (using a 2.8GHz Intel processor) in a simulation
of freely-decaying 2D turbulence, cf. figure 1 and Fontane & Dritschel (2009). Here,
HyperCASL is compared with two versions of CLAM, the first using a pseudo-
spectral (PS) method for qd and the second using a particle-in-cell (PIC) method.
Here, CLAM with PS qd is 8% more efficient than HyperCASL, while CLAM with
PIC qd is 60% less efficient.

CLAM
(PS + CA + PIC/PS)

Dritschel & Fontane (2010)

HyperCASL
(CA + PIC)

Fontane & Dritschel (2009)

DCASL
(CA + PS)

Dritschel & Ambaum (2006)

Mohebalhojeh & Dritschel (2009)

CASL
(CA)

Dritschel & Ambaum (1997)
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Zabusky, Hughes & Roberts (1979)
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Fig. 3. A genealogical tree for numerical methods based wholly or in part on contour
advection. Here CD = contour dynamics, CS = contour surgery, DCASL = diabatic
CASL, PS = pseudo-spectral and PIC = particle-in-cell

qd, this choice of hyperdiffusion gives the closest comparison to the results
we find when using particles for qd. Using a spectral method for qd rather
than particles is guaranteed to be more efficient. In the unforced simulation
illustrated in figure 1, this spectral version of CLAM results in a nearly 10%
gain in efficiency over HyperCASL — see Table 1 — and achieves significantly
greater accuracy. Although CLAM with PS qd is slightly less accurate than
CLAM with PIC qd, it is nearly twice as efficient.
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Fig. 4. Evolution of the vorticity field in a CLAM simulation of forced 2D turbulence
using a basic 256×256 grid (contours are retained to scales 16 times smaller). Times
t = 2, 5, 10 and 20 are shown from left to right. Only 1/16th of the domain is shown.
A linear grey scale is used between −|q|max < q < |q|max (black being most negative).

A small modification of the re-contouring procedure in HyperCASL (Fontane
& Dritschel, 2009) was made in CLAM, following extensive tests, to improve
the accuracy of this procedure. In recontouring, the difference field q′ = q− qa

at the end of a simulation period is extrapolated from the basic ‘inversion’
grid to an ultra-fine contouring grid (16 times finer in each direction) and
added to the contour-associated field qa on this grid (whose smallest scale is
the scale of surgery). This combined field is then recontoured, and the error
in contouring with a finite contour interval ∆q present on the inversion grid
is given to qd to start the next simulation period. There is then no change to
the total q on the inversion grid following recontouring. In HyperCASL, we
used bi-linear interpolation to extrapolate q′ to the contouring grid, whereas
in CLAM (and now in HyperCASL too) we use spectral interpolation (zero
padding) for greater accuracy. In this way we retain all information in q′.
Spectral interpolation results in no significant loss in efficiency.

A brief history of the key developments leading to CLAM is provided in figure
3.

3 A test case

We next examine a numerical simulation of forced 2D turbulence, and use this
to justify our choice of the filter F (k) and the filter cutoff wavenumber kc. Note,
here q is the 2D (barotropic) vorticity. We have carried out simulations at three
different resolutions and for widely varying forcing wavenumbers kf . Following
many previous studies, we have used narrow-band forcing in which a random-
phased top-hat enstrophy spectrum, constant over kf − ∆k ≤ k ≤ kf + ∆k,
is added every time-step to ensure a constant rate of enstrophy growth, here
7.8957, in the absence of dissipation. This forcing results in a nearly linear
growth of energy, which is only weakly dissipated over the times considered.
Note, the flow starts from a state of rest.

7



0 1 2 3
k10log

t = 5

t = 2

t = 10−2

−4

−6

−8

−10

 ε10log

t = 20

Fig. 5. Energy spectra E(k, t) at the times corresponding to the images in figure 4.
Note that the spectral tails extend well beyond the maximum wavenumber km = 128
associated with the inversion grid. These tails have slopes between k−4 and k−3,
and do not change significantly after t = 10. Instead, the spectra build at low
wavenumbers (large scales), consistent with a linear growth in total energy (see
text).

We focus on one simulation with a basic ‘inversion grid’ of 256 × 256 (with
maximum wavenumber km = 128), forced at k = kf = 32 (with ∆k = 2),
and using all of the standard parameter settings recommended in Fontane &
Dritschel (2009). In particular, we use a contour interval ∆q = π/5 ≈ 0.6283
for representing qa (using an estimated unit eddy turnaround time). The evo-
lution is simulated over a moderate time period, 0 ≤ t ≤ 20, corresponding to
nearly 80Teddy based on the time integrated maximum vorticity, or 10.5Teddy

based on the time integrated r.m.s. vorticity. A few stages in the evolution (at
t = 2, 5, 10 and 20) are shown in figure 4 (note, only 1/16th of the domain
is shown). In the earliest stage shown (upper left), the direct effect of the
forcing is most evident; the flow has not yet had time to evolve significantly.
By the next stage, one can already see the formation of vortices surrounded
by cascading filamentary debris. The later stages are closely similar, albeit
with more fine-scale structure and marginally more organised large-scale vor-
tices (the energy grows by cascading slowly to large scales from the forcing
wavenumber).

In spectral space (see figure 5), energy E(k, t) (shell averaged over wavevectors
k of magnitude k = |k|) spreads from its initial forcing region near k = kf = 32
and rapidly becomes nearly time-independent except at small k. There, energy
grows as it cascades to large scales, resulting in a growth of the total energy
Etot(t) =

∫
E(k, t)dk. This energy growth is approximately linear in time, as

expected statistically from narrow-band random forcing at large kf . Figure
6 compares the observed growth for various simulations with the theoretical
linear growth (dotted line). Two CLAM simulations are illustrated, one using
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dashed curves correspond to CLAM using particles for qd, CLAM using a spectral
method for qd, and HyperCASL, respectively, while the dotted line gives the theo-
retical growth. This simulations use all the standard numerical parameters set out
in Fontane & Dritschel (2009). In addition, the CLAM simulations here use the
second-order Butterworth filter (5) with cutoff wavenumber kc = km/3 = 42.
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Fig. 7. (a) Total energy Etot(t) versus time for three CLAM simulations using the
second-order Butterworth filter (5) with cutoff wavenumbers kc = 32 (thin line), 42
(bold) and 64 (dashed). The theoretical prediction is given by the straight dotted
line. (b) As in (a) except now for kc = 42 and for the following filters F (k): first-order
Butterworth [1 + (k/kc)

2]−1 (thin line), second-order Butterworth [1 + (k/kc)
4]−1

(bold), and third-order Butterworth [1 + (k/kc)
6]−1 (dashed).

particles for qd (bold line) and the other using a spectral method for qd (thin
line). The HyperCASL simulation (lower dashed line) shows poor conservation
properties. The CLAM simulations, by contrast, closely match the theoretical
growth apart from a slight deficit at early times, during the first period of
integration from rest without contours (0 ≤ t ≤ 2.846).
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Figure 7 compares the energy growth in CLAM simulations using (a) different
filter cutoff wavenumbers kc for the same second-order Butterworth filter (5),
and (b) different orders of the Butterworth filter for the same cutoff wavenum-
ber, kc = 42 (≈ km/3). We see in (a) that kc = 42 gives the best fit to the
theoretical prediction, while in (b) that the second-order Butterworth filter
gives the best fit. Poorer results (not shown) were found for the Gaussian fil-
ter F (k) = e−(k/kc)2 and the sharp filter F (k) = 1 for k ≤ kc and F (k) = 0
otherwise. The dependence on kc can be explained by noting that, for small
kc, most of the dynamics is controlled by the contours in qa, and we know from
Fontane & Dritschel (2009) that contour advection alone can lead to an erro-
neous growth of energy at low wavenumbers, resulting in an enhanced growth
of Etot. Conversely, for large kc, most of the dynamics is controlled by the
spectral evolution which is more diffusive than contour advection, resulting in
a retarded growth of Etot. From these results, and many other simulations for
different ratios of kf/km, we have found that the second-order Butterworth
filter with a filter cutoff wavenumber kc = km/3 is most accurate.

There is a limit, however, to how large one can make the ratio kf/km. Above,
we examined kf/km = 1/4, but when using a larger value like kf/km = 1/2 we
observed an early retarded growth of Etot followed by a later growth having a
slope slightly lower than expected (not shown). Every effort was made to cor-
rect this growth, from modifying the numerical parameter settings in CLAM,
to using a smaller contour interval ∆q, to changing the bi-linear interpolation
of the velocity field on contour points and particles to the third-order M

′

4

scheme of Cottet, Ould Sahili & El Hamraoui (1999), or the incompressible
quadratic-spline method of Handscomb (1984), and even to replacing CLAM
with a full pseudo-spectral simulation (on a four times finer inversion grid) for
the early simulation period. None of these improved the growth of Etot, and
all were more costly.

This limitation on the size of kf/km is, however, not surprising. When kf is
only half km, there is little room for resolving the nonlinear spread of the
forcing through qd, and this results in numerical dissipation. Relative to the
maximum effective wavenumber associated with the ultra-fine grid, here 16km,
our tests show that kf should be at least 64 times smaller. Independently, us-
ing a pure pseudo-spectral method, Scott (2007) has found that the maximum
wavenumber must be at least 64 times the forcing wavenumber to properly
model the inverse cascade in two-dimensional turbulence. It is therefore rea-
sonable to limit kf/km to 1/4 in CLAM when narrow-band spectral forcing is
used. Other common types of forcing, such as thermal forcing in geophysical
flows, tend to be broad-band with significant input at large scales. In general,
these types of forcing can be more easily represented in numerical models,
and CLAM is no exception. Indeed, CLAM like its predecessor HyperCASL
offers new possibilities for forcing, e.g. by introducing new particles carrying
circulation and other attributes (Fontane & Dritschel, 2009). Such forcing may
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Numerical Algorithm Cost (CPU seconds)

HyperCASL 7698

CLAM with PS qd 9856

CLAM with PIC qd 10864

Table 2
Comparison of algorithm efficiency in a simulation of forced 2D turbulence, cf. figure
4. In this case, both versions of CLAM are less efficient (28% and 41% respectively)
than HyperCASL, but HyperCASL is unable to capture the correct linear energy
growth.

be particularly effective in representing subgrid-scale convection in a model of
the atmosphere.

As regards efficiency, CLAM is less efficient than its predecessor HyperCASL
as indicated in Table 2. However, the extra work in CLAM is necessary, in
the case of forced 2D turbulence analysed above, to accurately capture the
correct growth in energy (see figure 6). The retarded energy growth seen in
HyperCASL is a consequence of retaining the forcing wholly in particles, which
diffuse vorticity every time they are reset on a regular array. By contrast,
CLAM transfers most of the forcing, every time-step, to a spectral method
(that used for qs), thereby preserving nearly all of the added vorticity. This, we
emphasize, is an especially important characteristic of CLAM. Hence, CLAM
not only represents the large-scale dynamics optimally (i.e. with a spectral
method), but also represents complex forcing accurately.

4 Conclusions

We have described and examined a new hybrid computational method, CLAM,
combining three numerical elements: pseudo-spectral, contour advection and
particle-in-cell. By using each element selectively across spatial scales, CLAM
achieves a substantially greater efficiency and accuracy than is possible when
using any one element on its own. This has been explicitly demonstrated for
HyperCASL in Fontane & Dritschel (2009), and CLAM is by design more ac-
curate for little extra cost. The use of a pseudo-spectral (PS) method allows
one to accurately represent the effects of forcing, and moreover avoids the slow,
erroneous growth of large-scale modes caused by errors in the contour-to-grid
conversion procedure and in contour surgery. The PS method is relatively
efficient compared to contour advection and particle-in-cell, and therefore nu-
merical efficiency is not significantly degraded. While the PS method is stable
only for a time-step satisfying the CFL constraint ∆t < ∆x/|u|max, in real-
istically complex geophysical flows the time-step is nearly always limited by
the maximum vertical vorticity: ∆t < π/10|ζ|max (Fontane & Dritschel, 2009).
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The CFL constraint applies only to flows dominated by large-scale motions.

CLAM is not limited to the study of two-dimensional turbulence. Like Hy-
perCASL, it is presently capable of studying single and multi-layer ‘quasi-
geostrophic’ (rapidly-rotating, stably-stratified) geophysical flows subject to
general forcing and dissipation mechanisms (cf. Fontane & Dritschel, 2009,
and Dritschel & Fontane, 2010). CLAM has also been adapted to a periodic
channel geometry, and work is in progress on a spherical extension. In differ-
ent contexts, CLAM has been implemented to study two-dimensional rotating
shallow-water flows, density-stratified flows in a vertical cross-section using
density as the tracer q (King, Carr & Dritschel, 2010), and idealised magneto-
hydrodynamics where the (potential) vorticity q is subject to the Lorenz force
(Tobias, Diamond & Dritschel, 2010).

Further extensions e.g. to three-dimensional rotating stratified flows are fea-
sible, requiring straightforward adaptions of existing CASL codes (Dritschel
& Viúdez, 2003). CLAM also presents a promising opportunity for accurately
modelling more realistic atmospheric and oceanic flows. CLAM can carry more
than one tracer q. Additional chemical and biological tracers (those that are
advection dominated) may be represented by additional sets of contours (with
natural parallelisation possibilities). But, only one set of particles is required
for all tracers. Each particle would contain a list of attributes, related to
the residue qd belonging to each tracer. Any forcing or dissipation (including
chemical reactions, changes of state, etc) would only modify the attributes of
a particle, not its position, which is determined by simple advection, i.e. by
(3). This appears to be a particularly efficient procedure for representing a
collection of interacting tracers.
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